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ABSTRACT 

In this paper, we have considered an internal state of a collapsing body including in 
the course of the process its compression below the Schwarzschild (Schwarzschild, 

1916) sphere, which requires the solution of the Einstein equations for the 
gravitational field in the material medium. In the centrally symmetric i.e. the velocity 
at each point must be directed along the radius, it represents the field outside a 
spherically symmetric mass in otherwise, empty space, later was also recognized as 
the solution representing both the outside and the inside of a non-rotating black hole. 
Schwarzschild solution allows the exact calculation of several of the post Newtonian 
effects of general relativity (GR) including the precession of planetary orbits, the 
bending of light around the sun, the exact gravitational frequency shift, the Shapiro 
(Shapiro and Teukolsky, 1991) time delay of light passing near the sun. and the 

precession of orbiting gyroscopes. In this work, we have considered that the fields 
equations can be solved in general form if we neglect the pressure of the dust like 

sphere, i.e. 0p = . Although the approximation made is not usually admissible in real 

situations, the general solution of this problem has considerable methodological 
interest. Here we have calculated the gravitational collapse of a dust like star in 

consultation with some coordinates, i.e. the time coordinates
0

~τ τ . Ultimately our 

conclusion towards the total gravitational collapse of the large scale structure of the 

universe when time τ  synchronizes to 
0

τ , then a singular situation arise, which is 

called the beginning of the universe, i.e. big bang, at this moment the density was 
infinitely high.  

 
Keywords: Schwarzschild solution, material medium, gravitational field, collapsing 
dust star, mass energy density. 
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INTRODUCTION 

When the star is heavier than a few solar masses, it could undergo an 

endless gravitational collapse without achieving any equilibrium state. This 

happens when the star has exhausted its internal nuclear fuel which provides 

the outwards pressure against the inwards pulling gravitational forces. In the 
process of such a compression the central temperature of the material rises to 

ignite a nuclear fuel burning cycle in which the hydrogen, which forms the 

bulk of the cloud, burns to make helium, the gravitational contraction is 
halted and the star enters a quasi-static periodic when it supports itself 

against gravity by means of the thermal and radiation pressure. Such a phase 

may continue for billions of years, depending on the original mass of the 

star. If M < M
☼

 (where M
☼

 denotes the mass of the sun ~ 
33102× gm), this 

period is longer than 
1010  years, but if M >10M

☼
, it has to be less than 

72 10×  years, that is, very massive stars burn out their nuclear fuel much 

faster. For a review, see for example, Blandford, (1987), Blandford and 
Throne, (1979). The point of infinite density singularity is the final state for 

such an evolution is either an equilibrium star or a state of continual, endless 

gravitational collapse. The key factor for such stability analysis is the 
equation of state for the cool matter of the star in its ground state, that is, 

when all possible nuclear reactions have taken place and no further energy 

can be derived from such burning. The support in such a case must come 
either from the electron degeneracy pressure, when the star becomes a white 

dwarf, or from neutron degeneracy pressure giving a neutron star. 

Chandrasekhar, (1931, 1934, 1983) approximated the equation of state, in 

this case by an ideal electron Fermi gas and showed that this is a maximum 
mass limit for the mass of a spherical, non rotating star to achieve a white 

dwarf stable state, which is given by 
c

M  ~
2

1 4
e

.
µ

 
 
 

M
☼

  where eµ  is the 

constant mean nuclear weight per electron and escape such ‘compressed 

stars’ they were initially called dark or frozen stars. A more catchy named 
was coined years later by John Wheeler, (1968) who called them ‘black 

holes’, black because they cannot emit light, hole because anything getting 

too close fall into them, never to return, the name stuck. To solve these types 
of problems we consider the Einstein’s field equations: 

 

                     
1

8
2

R g R GT
ab ab ab

π− = −                                                   (1) 
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where 
ab

T  is the energy of the matter (including the electromagnetic field) 

and R  is the Ricci scalar.  
 

The equation (1) shows the universal mass energy density relation. 

The Einstein equations are highly nonlinear. Therefore for gravitational 

fields the principle of superposition is not valid. The principle is valid only 
approximately for weak fields which permit a linearization of the Einstein 

equations. Einstein published his theory in 1915 and due to high nonlinearity 

and complexity of the equations; Einstein himself had not expected that the 
exact solution to the problem could be formulated, but within one year after 

the publication of the theory, K. Schwarzschild found the first physically 

significant exact solution to Einstein equations in 1916. Schwarzschild 
exterior solution contained a complete description of the external field of a 

massive body such as a star where the leading assumptions were: 

 

• The field was static 

• The field was spherically symmetric 

• The space time was asymptotically flat 

• The field was electrically neutral and non rotating 

 

In this work our aim is to investigate the Schwarzschild interior 

solution which describes the line element for a sphere of incompressible 

perfect fluid of constant proper density ε  such that at the boundary of the 

sphere, the pressure is equal to zero and the solution agrees with the exterior 
solution. It is obvious that if a massive centrally symmetric body is 

gravitationally unstable, this instability will remain for small disturbances of 

the symmetry so that such a body will collapse. The line element holds in 

the interior of a massive body which is at rest at the origin. We have also 
calculated the mass energy density for a collapsing dust star in connection 

with some incoming coordinates. 

 

 

PRELIMINARIES INTERIOR SOLUTION OF THE FIELD 

EQUATIONS 

For a dust like medium one can choose a references system which is 

both synchronous and co-moving. Denoting the time t and the radial          

co-ordinate r chosen in this way by τ  and R respectively (Landau and 

Lifshitz, 1975), we write the spherically symmetric line element in the form 
(Chandrasekhar, 1983), 
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2 2 2 2 2 2 2( ,R )ds d e dR r ( ,R )( d sin d )λ ττ τ θ θ φ= − − + .         (2) 

         

The function ),( Rr τ  is the ‘radius’, defined so that rπ2  is the 

circumference of a circle (with centre at the origin). The form (2) fixes the 

choice of τ  uniquely, but still per units arbitrary transformations of the 

radial co-ordinate of the form )(RRR ′= . 

 

Now, from equation (2), we have:  

 

2 2 2

00 11 22 331 sing , g e , g r , g r
λ θ= = − = − = − .              (3) 

 

Then, the contravariant forms can be written as: 
 

00 11 22 2 33 21 sing , g e , g r , g ( r )λ θ− − −= = − = − = − . (4) 

 

Again, the determinant of the metric tensor jig is given by: 

4 2
sini jg g r e

λ θ= = − . 

 

Now, the energy-momentum tensor in the material medium is given by: 
 

νµνµνµ ε pguupT −+= )(                         (5) 

ε=00T  = Mass Energy Density                                       (6) 

 

         11 22 33 0T T T= = = .                                                                   (7) 

 

Thus, in the co-moving system and pressure free medium, the 
energy-momentum tensors are: 

 

0 0 0T ( , , , )µν ε= .                       (8) 

 

The non-vanishing values of 
'Γ s can be calculated as follows:  

1
11

1

2
λ′Γ = ,   

1
22 e rr

λ− ′Γ = − ,  
1 2
33 sine rr

λ θ− ′Γ = −                            (9a) 
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2 2
12 21

r

r

′
Γ = Γ = ,  3 3

13 31

r

r

′
Γ = Γ =                                        (9b) 

2
33 sin cosθ θΓ = − ,  

3 3
23 32 cotθΓ = Γ =                                         (9c) 

1 1
01 10

2

λ
Γ = Γ =

�

,  2 2
02 20

r

r
Γ = Γ =

�
,  3 3

03 30

r

r
Γ = Γ =

�
             (9d)  

0
11

1

2
eλλΓ = � ,   

0
22 rrΓ = � , 0 2

33 sinr r θΓ = � .                            (9e)  

 

Now, from Ricci tensor, we have: 

 
c c d c d c

ab ab,c ac ,b ab d c ac d bR = −Γ + Γ − Γ Γ + Γ Γ .                            (10) 

 

The values of the different components of the Ricci tensors are as 

follows: 
2

00

2

2 4

r
R

r

λ λ
= + +
�� ���

                   (11) 

01

2r r
R

r r

λ′ ′
= −

��
                                                                  (12) 

2

11

2

2 4

e r e e r r
R

r r r

λ λ λλ λ λ λ′′ ′ ′
= − + − − −

�� � � �
                          (13) 

2 2
22

1 1
1

2 2
R r rr e r r e r e rr rrλ λ λλ λ− − −′ ′ ′ ′′= − − − + + − −�� �� �             (14) 

2 2 2 2 2 2
33

2 2 2

sin sin sin sin

1 1
sin sin sin

2 2

R rr r e rr e r

e rr rr .

λ λ

λ

θ θ θ θ

λ θ λ θ θ

− −

−

′′ ′= − + + +

′ ′− − −

�� �

��

            (15)

  

Now, we have the Ricci scalar (or scalar curvature) 

00 11 2 2 33

00 11 2 2 33

a b

ab
R g R

g R g R g R g R

=

= + + +
         (16) 

which implies, 

 

2 2 2

2 2 2

4 4 2 2 2 2 2

2

r e r r e r e r r
R

r r r r r r r

λ λ λλ λ λ
λ

− − −′′ ′ ′ ′
= + + − + + − + +

� ��� � �
��  .         (17) 
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We are now in a position to solve the Einstein interior field equation, 

 

 
1

8
2

ab ab abR g R GTπ− = −                       (18) 

 

After detail calculations we have the following interior solution of 
the Einstein field equations:  

 

2 2

2 2

1
2 1 8

e
rr r rr rr r G

r r

λ

λ λ π ε
−

   ′′ ′ ′ ′− + − + + + =   
�� �                      (19) 

 2 22 1 0e r rr rλ− ′− + + + =�� �                                                     (20) 

[ ]
22

2 0
2

e r r
r r

r r r

λ λ λ
λ λ

−  
′′ ′ ′− − + + + + = 

 

� ��� �
��                           (21) 

2 0r rλ′ ′− =��                                                                               (22) 

 

where the prime denotes the differentiation with respect to R and the dot 

with respect to τ . These are the set of equation describing the interior of a 

collapsing dust star of mass energy densityε . 

 

Now, the equation (22) can be solved as follows: 

 

     2 1e r f ( R )λ− ′ = +                      (23) 

where  f (R) is an arbitrary function, subject only to the condition that 

1 0f+ > . 

 

Again, from the equation (20), we get 

 

2 22 1 0e r rr rλ− ′− + + + =�� �  
22rr r f ( R )⇒ + =�� � ; using equation (23). 

22
dp

rp p f ( R )
dr

⇒ + =                                                                  (24) 

r dp dp d r r dp
r p r p

dt d dt r p dr

τ

τ τ

 ∂
= = ∴ = = = ⇒ = 

∂ 

�� ��
� ��∵

�
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2 2d
r ( p ) p f ( R )

dr
⇒ + =     

2d
( rp ) f ( R )

dr
⇒ =  

 

∴integrating, we get  

 

2
0rp rf ( R ) f ( R )= +  

 

where )(0 Rf is another constant of integration. 

Thus, 2 2 0f ( R )
r p f ( R )

r
= = +�                                                                (24a) 

2

0f ( R )dr
f ( R )

d rτ

 
⇒ = + 
 

 

0f ( R )dr
f ( R )

d rτ
⇒ = ± +  

  ∴ 

0

dr
d

f ( R )
f ( R )

r

τ = ±

+

 

 

∴integrating, we get  
 

0
2

0

rdr
( R )

f ( R )r f ( R )r
τ τ= ± +

+
∫                                       (25) 

 

where, )(0 Rτ  is constant of integration. 

 

Putting )()(0 RFRf = , we get from (25)  

 

)(0
2

R
Frrf

rdr
ττ +

+
±= ∫  
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The function ),( Rr τ  obtained from the integration can be written in 

the parametric form: 
 

 

0 3
2

cosh 1
2

sinh 1

2

F( R )
r ( )

f ( R )
F( R )

( R ) ( )

f ( R )

η

τ τ η


= − 



− = −


         if 0)( >Rf                  (26) 

 

Again,  

{ }
0 3

2

1 cos
2

sin
2

F( R )
r ( )

f ( R )
F( R )

( R ) ( )
f ( R )

η

τ τ η η


= −
−

− = −
− 

          if 0)( <Rf           (27) 

 

If, 0)( =Rf ,    [ ]
1

3 2
3

0

9

4
r F( R ) ( R )τ τ

 
= − 
 

                                     (28)   

 

2
r r′ = ( ) ( )

2 1 1
3 3 32

3
0 0 0

9 9 1 9 2

4 4 3 4 3

F F
F Fτ τ τ τ τ

−
       ′ ′− − +     
       

            (29) 

 

( ) ( )
1 1

3 32 2 1
3 3 3

0 0 0

9 1 9 2

4 3 4 3

dr F
r F F

dR
τ τ τ τ τ

− −   
′ ′ ′= = − + −   

   
               (30) 

 

 

NEW SOLUTIONS 

From equation (23) we can write, 

 
2

1

r
e

f ( R )

λ ′
=

+
  

                      

2log log 1r ( f )λ ′∴ = − +  
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2

1

r f

r ( f )
λ

′′ ′
′⇒ = −

′ +
 

2
1

r f
r r

( f )
λ

′ ′
′′ ′ ′⇒ − =

+
 

2
1

rr f
rr rr

( f )
λ

′ ′
′′ ′ ′⇒ − =

+
 

2 2
2

1

rr f
rr r rr r

( f )
λ

′ ′
′′ ′ ′ ′ ′⇒ + − = +

+
 

( )
2

2

2 2
2

1

e r e r f e
rr r rr

r( f )r r

λ λ λ

λ
− − −′ ′ ′

′′ ′ ′ ′⇒ + − = +
+

 

( )2

2 2

1
2

1

e f r f e
rr r rr

r( f )r r

λ λ

λ
− −′ ′+

′′ ′ ′ ′⇒ − + − = − −
+

             (31) 

 

Now, from equation (22),  
 

2r

r
λ

′
=

′

�
� .                                                                              (32) 

 

Again from equation (24a) we can write, 

 

F
r f

r
= ± +�       

1

2

2

1

2

F F Fr
r f f

r r r

−
′ ′   

′ ′∴ = ± + + −   
   

�   

  

Also,    
2

2 1r r F Fr
r f

r r r r
λ

′ ′ ′ ′= = + − ′ ′  

� �
��  

2

2
1 1

r F Fr F
rr r f f

r r rr
λ

′ ′ ′⇒ + + = + − + + + ′  
�� �  

      
2

1 1
r F

rr r f f
r r

λ
′ ′⇒ + + = + + + ′  

�� �     

2

2 2

1 1 1
1

F f
rr r f

rr rr r
λ

′ +   ′⇒ + + = + +   ′  
�� �                                  (33) 
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Now, adding equations (31) and (33) we obtain, 

 

( ) ( )2 2

2 2

2 2

1
2 1

1 1 1

1

e
rr r rr rr r

r r

r f e f F f
f

r( f ) rr rr r

λ

λ

λ λ
−

−

′′ ′ ′ ′− + − + + +

′ ′ ′+ + 
′= − − + + + ′+  

�� �

 

 

                   
1f F

f
rr rr r

′ ′ ′= − + + ′ ′  
,    

2

1
using

1

e

f r

λ− 
= 

′+ 
 

 

                   
2

F

r r

′
=

′
 

 

Now, from equation (19) we get, 

 

2
8

F
G

r r
π ε

′
=

′
.                                                                                 (34) 

 

Applying the values of equations (28) and (30) in equation (34) we get, 

 

( ) ( ) ( )

2 1 1
24 2 13 3 3
33 3 3

0 0 0 0

8

9 1 2

4 12 3

F
G

F F
F F

π ε

τ τ τ τ τ τ τ
− −

′
=

        ′ ′− − + −       
        

 

 

which gives the following result (Biswas, 2007a), 

 

( ) ( )

2 1 1
2

3 3 3
3

0 0 0

8

9 1 2

4 12 3

F
G

F F
F F

π ε

τ τ τ τ τ
−

′
=

        ′ ′− − +       
        

 .            (35) 
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CONCLUDING REMARKS 

From the equations (26), (27) and (28) we get both contraction and 
expansion of the sphere (depending on the range of values taken by the 

parameterη , where the parameter η  runs through values from 0  to 2π  ). 

The contraction and expansion both are equally admissible for the field 
equations. The important problem of behavior of an unstable massive body 

corresponds to contraction; the massive body turns to gravitational collapse. 

The solutions (26), (27) and (28) are written so that contraction occurs 

whenτ , while increasing tends to 0τ . To the moment 0( R )τ τ= these 

corresponds the arrival at the center of the matter with a given radial 

coordinate 0R  the time τ (for a given R) decreases monotonically. Now the 

important fact is that in this calculation the solution collapse occurs for any 

mass of the sphere is a natural consequence of neglecting pressure i.e. 

0p = . Clearly, as 0ττ →  or ττ →0  the density ∞→ε , from the physical 

point of view the assumption that the matter is dust like is never admissible, 

and we should use the ultra relativistic equation of state 0

1

3
p ε= . It appears 

however, that the general character of the solution collapse is independent of 

the equation of state of the matter (Lifshitz and Khatatnikov, 1961). 
 

Here we find that the point of infinite density singularity is a concept 

of classical (that is non quantum) general relativity predicts its own 
downfall, just as classical mechanics, predicted its downfall by suggesting 

that blackbodies should radiate infinite energy or that the atoms should 

collapse to infinite density. And as with classical mechanics, we hope to 

eliminate these in acceptable singularities by making classical general 
relativity into quantum theory-that is creating many things from nothingness 

by developing the quantum gravity. In the central depths of a black hole an 

enormous mass is crushed to a mine scale size. At the moment of the big 
bang the whole of the universe erupted from a microscopic nugget whose 

size makes a grain of sand look colossal. These are realms that are tiny and 

yet incredibly massive, therefore requiring that both quantum mechanics and 

general relativity simultaneously brought to bear. For reasons that will 
become increasingly close as we proceed, the equations of general relativity 

and quantum mechanics, when combined, begin to shake, rattle and gush 

with steam like a red-lined automobile. Even if we are willing to keep the 
deep interior of a black hole and the beginning of the universe shrouded in 

mystery we can not help feeling that the hostility between quantum 
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mechanics and general relativity cries out for a deeper level of 

understanding.    
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